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Abst ract

Recent papers have brought out the intimate connection that

exists between the problems of detection and estimation in many

coninunication problems. In many cases , it becomes necessary to simul-

taneously detect and extract the signal so that the two operations

must be jointly optimized in order to improve receiver performance.

However, the receiver structures so obtained are considerably more

complicated than conventional receivers and it is not clear that this

added complexity results in a significant improvement in receiver

performance. This report investigates a specific suboptima]. scheme

fo r estimatin g a signal in the presence of uncertainty regardiiig

its reception , namely, the p robabilistic estimation scheme. The

scheme uses a probab ilistic judgemen t to determine the presence of

the signal in the observations. In order to obtain exp licit

estimation algorithms and to facilitate performance evaluation,

a specific problem of signal estimation under uncertainty, namely

the tracking of a target in a multi—target multi—sensor environment

is considered. Explicit algorithms for this problem are developed

and the performance of the receiver is evaluated under conditions

involving fading media or quantized observations.
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1. INTRODUCTION

Problems of signal estimation and detection which are central to

communication systems have received considerable attention in recent

years. While for the most part the solutions to these problems have been

obtained assuming that they are essentially independent operations [1],

recent papers have brought out the intimate connection that exists between

the two [ 2— 9 ] .  In many cases , it becomes necessary to simultaneously

detect and extract the signal so that the two operations must be coupled

in order to improve receiver performance . Such examples occur in all

circumstances where properties of the signal source or transmission medium ,

- 
- signal presence or absence, or signal identification are jointly desired

and may arise in such diverse fields as underwater communications, seismic

detection, pattern recognition or radar ranging and tracking. For example,

in communicat ion over fading dispersive channels, the exact value of chan-

nel attenuation is not known. In a multitarget, multisensor environment ,

it becomes necessary to simultaneously identify and track the target. In

a pattern classification problem , the pa r ticular pat tern giving rise to

the received signal is unknown.

The basic problem may be formulated as follows. The data z received

during each observation interval I consists of (a) a signal y corrupted by

observation noise v (Hypothesis H
1
) or (b) noise v alone (Hypothesis H

0
).

We assume that z and y are vectors consisting of sampled values. The sig-

nal y is assumed to be a realization of a stochastic process. We are re-

quired to recursively estimate either the signal y or some parameters 0

associated with it.

1
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We thus wr ite

H1 : Zk 
= 

~k 
+ V

k

H
0 
: Zk 

= Vk 
for k c I (1.1)

The receiver is required to make two functionally related decisions at

the end of each observation interval, the first on the presence or ab-

sence of the signal (a detection decision) and the second on the va~ e

of the signal (or parameter) vector (an estimation decision).

Let us define R.~ as the risk associated with detecting the signal

presence and R
E 
as the risk associated with estimating the signal. If

the two operations of detection and estimation can be carried out in

pa rallel or simultaneously , but independently and the two components R~

and R
E 

can be minimized separately , then the two problems are said to be

uncoupled [4,5]. The detection procedure is carried out in the usual

fashion but the estimator performance has to be optimized in the face of

uncertainty as to the signal presence. In many situations such a sep-

aration of costs is not possible and the two operations are said to be

coupled.

We can write the observation equation for the joint detection—

estimation problem as

Z k~~~~ Yk + v k f o r k c l  (1.2)

where ~ is a binary random variable taking on the values 0 or 1. The

problem is then referred to as a single—shot problem , and the same hy—

pothesis is true over the entire observation interval. ~ is called

the indicator variable.

Let Z
k 
denote the sequence [z

l
,z
2
...z

k]. Assuming a quadratic

cost for the estimation problem, let the estimate of the signal 
~k be2
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denoted as and let denote the estimate assuming hypothesis H1 to

be t rue . It is clear that 
~k 

= E
~

yk
} = 

~~ 
-

By expanding in mixtures , we can then write the estimate as

= 

~ 
y
~ 
P(H

1
~ z~) (1.3)

1—0,1

If P0 
and P

1 
are the prior probabilities associated with H0 

and

H1, 
define

Pl 
p (Z~jH1)

A
k 

= 

P0 
p(Z

kIHO
) 

(1.4)

and

Ak (1.5)
k 1 + Ak

Then an alternative form of Eq. (1.3) is [8]

= Yk + [1 rk]~ y 
(1.6)

This differs from the form obtained by Middleton and Esposito [4] in the

presence of the second term.

It can be further shown 111] that

rk = E{
~

IZk
} (1.7)

It can be seen from Eq. (1.4) that obtaining the optimal estimate requires

computation of the likelihood function A.K
. The structure of the optimal

estimator consists of an estimator for each hypothesis, the outputs of

which are combined in a suitably weighted fashion to give the optimal

estimate.

If the active hypothesis changes from observation to observation,

we have the multi—shot problem. In this case, Bk 
can be modeled as an

independent random sequence taking on the values 0 and 1. At stage k,

the possible values of B~ , 82 8k 
come from a set of ~~ binary seç .ences

_ 
_ _  
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of length k. Let these sequences be denoted by , j = 1,2 ... k.
Then we can write

j=l 
E{ykIZk , c~~

} p{ci
~ I z k} (1.8)

The estimator at the kth stage consists of a bank of 2k filters (one for

each possible sequence), whose outputs are then combined appropriately .

It is clear from Eq. (1.8) that this leads to an exploding memory requir—

ment.

It is well—known [12] that the exploding memory problem can be re-

placed by one that requires storing complete density functions. The rele-

vant densities may be recursively computed if there exists a fixed dimen-

sional sufficient statistic.

Various suboptimal schemes have been proposed to eliminate the

exploding memory requirements of Eq. (1.8). The linear estimator [13]

does provide one such scheme in which a single filter is used to provide

the best linear estimator. Other schemes essentially choose one or a

finite number of the 21( possible sequences in some manner. This reduces

the summation in Eq. (1.7) to a summation over a fixed number of terms

and hence leads to a fixed number of estimators in the implementation.

In this report, we will investigate a specific suboptimal scheme

for estimating a signal in the presence of uncertainty regarding its

reception , namely, the probabilistic estimation scheme [14,15]. Explicit

algorithms for estimation using the scheme are developed and the per—

formance of the estimator under several conditions is evaluated. In

order to obtain explicit algorithms, a specific problem of signal estima—

tion under uncertainty, namely the tracking of a target in a multi—target4
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multi—sensor environment is considered . While the algorithms presented

in this report have been developed explicitly for this problem , they

can easily be extended to other situations involving similar models.

The report is organized as follows . In Chapter II, the specific

problem considered in the report is formulated and the observation

models presented. The structure of the probabilistic estimator for

this problem is developed in Chapter III and its performance compared

with that of two other suboptimal estimators presented earlier in the

literature .

As indicated earlier, in all problems where there is uncertainty

regarding the signal presence in Li4~ L.fl~ervations, the two operations of

signal detection and estimation must be carried out simultaneously. Thus

th e cost associated with these two problems must be optimized jointly .

However the receiver structures so obtained are usually complicated .

Hence it is desirable to compare their performance with suboptimal re-

ceivers to determine whether a significant improvement results from the

increased complexity of the receiver. Chapter IV presents such a compari-

son between a receiver obtained using the coupled risk formulation and

the scheme. Chapter V presents an evaluation of the probabilistic scheme

in fading media while Chapter VI develops algorithms for  estimation with

quantized observations.

5
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2. SIGNAL AND OBSERVATION MODELS

2.1 Introduction

The problem of tracking a target such as a space vehicle in multi—

target and multi—sensor environments has received considerable attention

recently [1—3] . When observations from several sensors are supplied to

the receiver , it must decide which, if any, of the sensor meaurements cor-

responds to the target being tracked and suitably process these measure-

ments to update the estimate of the target state. In real time surveil-

lance systems , tracking filter performance heavily depends on two functions.

The first function is referred to as sensor return—to—track correlation

[3—5]. In the presence of multiple targets a sensor return could originate

from one of three possible sources (hypotheses). The return could be

from the object being tracked , could originate from one of the other

objects. not being tracked , or could be noise alone. Sensor return—to—

track correlation is a decision process serving to decide whether a

sensor return originated from the object being tracked . The second

function , tracking filtering, has been developed in [5]. The sensor

return which originates from the object being tracked is used in

track updating ; otherwise, there is no updating and the one—stage pre-

diction is used. The dynamic equation of motion of the target being

tracked is assumed to be modelled by a set of Gauss—Markov difference

equations

a~~d~~x + r ~~k+l kk kk

— c
k
x
k 

(2.1)

8
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where X
k is the n x 1 state vector , and 

~k 
is a p x 1 output vector. The

rn—vector is white zero mean guassian with covari&’nce E(w w = Q 6k e  k k e k
is an n x n state transition matrix and is an n x m excitation matrix .

If a particular sensor is not locked onto the target being

tracked, the corresponding sensor re turn at any stage can originate

from one of three sources (hypotheses), namely, (i) noise alone

(e.g., cut—off communication link), (ii) false alarm (e.g. thermal

or process noisa , or clutter from a vehicle not being tracked), and

(iii) the vehicle being tracked. The receiver performs under

uncer tainty of reception in a ternary case which considers all the

possibilities. A suitable model for the observations under each

hypothesis can then be formulated as follows [1]:

Under H1, the observation Zk is given by

Z
k 

uk 
(2.2)

where the p x 1 vector uk 
is a zero mean , white Gaussian sequence

with covariance ECU
k
U )  R.

~
6kn. Under hypothesis ii

2
, the current

observation is not used in track updating and the one—stage prediction

is used instead. The effect of the extraneous returns can be modeled

as a white, zero mean sequence 
~k’ with covariance E{VkVm) ~k~km

It is therefore reasonable to model the observation Zk 
under hypothesis

2H as

Z
k 

— C
k ~ (k I k— 1) + 

~k (2 .3 )

where ~ (k l k—l) is the one—stage prediction of

The expression for the covariance kernel , ~~~ is given in [5)

and for p = 2 simplifies to

9
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n ,,,~~k’~klk_l
C
k + R

k
k 1 + 

~~~~~~~~ 

(2,4)

where V
k f k l E {(x

k 
- Xk i k_ 1 ) ( X

k 
- xk(k_1) 

} , flfl~ is the expected

number of incorrect returns, in the one sigma region

0k Iflifl((C
k
V
klk l

Ck + 
j~~) 3

l/2 and p is the correlation between two

measurements.

The noise sequence s Wk) vk
) and are mutual ly independent

and are un eorrelated with respect to the initial state

x0 which is multivariate normally distributed of dimension n with

mean 
~
j  and covariance V , N [p , \ 3 .
0 0 fl 0 0

Under II~, the observation corresponds to the vehicle being

tracked and hence we have

Z
k 

C
k

X
k 
+ U

k

It is well known that the optimal Bayes estimator for this

problem involves an evergrowing memory and is hence not feasible.

This is because the estimate of at each stage depends on the

sequence of past true hypotheses. This sequence, however , is un-

known and hence the estimate must be averaged over all possible

past sequences. This corresponds to the unsupervised learning

problem in pattern classification. It is clear ~that as the number

of stages increases , the total number of sequences over which the

estimates must be averaged increases very rapidly. We, therefore,

need to resort to suboptimal schemes which use a fixed memory.

--_ _ _
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2.2. Errnr Rnii nd~

As indicated above, the case in which the hypothesis at each stage

associated with any sensor return is not known, corresponds to

unsupervised learning. If the hypotheses are known, we have supervised

learning. In general, if the classifications of the sensors are not

known a priori, unsupervised learning mus t be resorted to. In many

eases partial information about the classifications can be gained by

making use of all the past observations as well as all the past classi-

fications; e.g., by probabilistic judgements to determine the classifi’-

cations; this is referred to as partially supervised learning, E~ .

Intuitively, tJ~e variance associated with par tially supervised

learning is bounded below by that of supervised learning (learning with

a teacher), and bounded above by that of unsupervised learning (optimal

Bayesian learrung). These bounds for the optimal stochastic control

problem with tinite state space have been investigated in [6 ], and

tighter bounds given in [7 1. Similar bounds for the optimal filtering

problem can be established by augmenting the message model of Eq. (1)

such that

• 

Xk+1 kXk ~~
‘
kWk 

2 
(2.6)

- — f(x k ,~ k) , x~ c {O ,i) ~i’ k (2 .7 )

where Eq. (2.6) can be identified with Eq. (2.1) by setting x~ 
— ; and

— W
K~ 

Eq. (2.7) is the model for switching hypotheses, is white

zero mean gaussian sequence uncorrelated with as we].l as the initial

state, and x~ and x~ are independent.

- 

~~

-

, 

-

~~~~~~~ 

- . •  

~~~~~~~
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The corresponding observation model is

Zk h(x~,x~) + Ck (2.8)

which can be identified with Eqs. (2.2) — (2.4) by setting

0 , x~ 0 , and = V
k 

, i.e. .h[x~,x~) — 0

if is active 
- (2.9)

1 2X
~K

O , x~~~~l , ande
k
= v

k

i.e. h[x~,4] = x
~
Ck~~ I k...1 

+ if is active (2.10)

and •

2
X~ç~~~l and c

k
=v

k

i.e. h(x~,x.~] — X
~
C
k
X
~ 
+ V

k 
if H~ is active (2.11)

Let V~(~~), V~ (c~~) and V~ (w,~) denote the error variances corresponding

to the supervised estimator (optimal Bayesian estimator with known

classification of sensor returns), the unsupervised estimator

(optimal Bayesian estimator with unclassified sensor returns) and par-

tially supervised estimator. Then, following an argument similar to

[10], we can show that

< V~ (w(k)) < v~ (~(k)) V k (2l7~

That is, the error variance associated with the partially supervised

estimator is bounded below by that of the optimal Bayesian estimator with

known classifications and above by the estimator with unknown classifications.

The proof of Eq. (2.12) is by induction and is as follows.

At the final stage N, the optimal estimate and the correspond—

ing optimal return v
N (LU(N)) 

are evaluated , respec tively, as

— conditional mean of f(X
N I ZN
) - - (2.13)

~ 

~~~~~~~~~~~

•

~~~~~

- -

~~~~~~~~~~



I

and

vN (w (N ) ) conditional variance of f(x
~4 I Z N ) (2.14)

where ~(N) = f(X
N IZN

)

Hence , at the final stage N

mm E C(L
~
,x.N ,N) = E mm E C(

~N
,xN,

N)
XN 

ZN XN 
Z

N

= E VN (W(N) ) (2.15)
Z
N

where E denotes the mathematical expectation with respect to the
ZN

distribution of Z , and E denotes the mathematical expectation with

respect to the conditional distribution of x~ given ZN
. 

-

Assume that the following equality holds at stage k+l
N

mm E ~ C(~ ,x ,i) = E Vk+l (w(k+l)) (2 16
~~ 

...
~~~ i=k+l Z.

k+l N

Then , at stage k, application of the principle of optimality yields

mm E 
~ 

C(
~

?1,xi, i) — min{E C(
~ k ,xk ,k) + E Vk+l(w(k+l))}

X
k

X
N ~~~ ~

Ck 
Zk+l

= rnin {E E C(
~ k, xk ,k) + E E - Vk+l (w(k+l))}

X
k Zk I Z k 

Z
k k+l

Z
k

•

1 E min {E C(
~k, xk ,k) + E Vk+l (W(k+l)) }

— E Vk (w(k) )

where

I - vk((~
)(k)) — rnin{E CØck, xk, k) + E Vk+l co)(k+l))} (2.17)

13
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Equations ( 2 . 15 ) — ( 2 . 17 )  hold equally fo r all the three types of supervision

and corresponding expressions are obtained by adding superscripts on the

optimal returns.

It can easily be shown that for the cost function under

consideration the following inequalities hold

C(L
~
,xN ,N) > mm C ( ,x.N,N) > mm C(~~,x.~,N) (2.18)

Since operations such as minimization and conditional expectation do

not change the inequalities ,

mm E C(
~~

,x
N,
N) > mit E mm C(

~~
,x
N
,N) > mm E mm C(~~,x.~,N)I ZN X

N 
ZN 2~ 

Z
N 

X
N
(2.19)

which can be reduced to

mm E C(LN ,xN ,N) > mit E mm C(
~~~

,xN ,N) > E mit C(LL~
,x ,N)

XN IZN #~l 1Z~ 
~~ 

IZN 
~~ (2.20)

Utilizing the preceding inequalities and making use of the independence

of x~ and x~, Eq. (2.15) yields

v~ (w(N)) — mm B C(
~N

,xN,
N)

N i z
N

> mm E mm C(L
~
,xN,

N)
Z A2-

~~~~~~~ 
t N x N

Al 1 2 A 2
- mm E C(xN,

xN,
x
~~

xN , N)
Al I z N

— V~~(w(N)) (2.21)

Assume that the inequality holds at stage k+l, i.e.

V

~

(w(k)) > v (w(k)) V k (2.22)

14
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At stage k, from Eq. (2.17)

v~ (~ (k)
) 

= min{E c(*k
,xk

,k) + E v~+1(~~
k+l )}

> ~~~~ C(~~ ,x~ ,k) + 

k+i k

~k I Z k 
Zk+l IZ k

= v~ (w(k)) 
(2.23)

To establish the lower bound , it is noted that Equation (2.15) yields

V~ (w(N)) = mj n E C(
~~

,xN,
N)

— m m  C(~~ ,.x~,N) + miii 7~ 
C(~~~,x~ ,N)

~~~~~ N

< mlii E C(~~~,x~ , N ) + mlii E C(~~~,x~ ,N) (2 .24)

X
N

ZN

where C(
~~

,xN,
N) — C(~~~,x~ ,N) + C (~~~,x~ ,N) because of the quadratic nature

of the cost function C(L
~
,xN ,N) and the independence of x~ and x~.

Following the same reasoning as in Eq. (2.23) one can show

V~~(w(k ) )  < V~ (w(k) ) V k (2.25)

In subsequent chapters,we will consider a specific partially supervised

estimator, namely the probablistic estimator and derive explicit algorithms

for its implementation under various conditions.
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3. THE PROBABILISTIC ESTIMATOR

3.1 Int roduction

As discussed in Chapter I, the optimal Bayesian estimator for

t racking a target in a mult i—target , mu lti—sensor envi ronment is not

feasible because of its exploding computational requirements. In

this chapter , we will present a suboptimal scheme, namely the probabilistic

estimator which uses a probabilistic judgetnent at each stage of the

observations to determine the true hypothesis. The scheme is evaluated

by comparing Its performance with two other suboptimal schemes which

have been presented in the literature.

As explained in Chapter II , the dynamic equation of motion of the

target being tracked is assumed to be modelled by the set of Gauss—

Markov difference equations

X
k+l ‘

~k
’
~k 

+

— ckxk (3.1)
where X

k 
is the n x 1 state vector , and 

~k 
is a p x 1 output vector.

The n—vector is white zero mean guassian with covariance EfWkC
~e
}=Q

k
ó
ke~4~k

is an nxn state transition matrix and rk is an man excitation matrix.

The observations at any stage can originate from one of three

sources (hypotheses), namely, (i) noise alone (e.g., cut—off communication

link), (ii) false alarm (e.g. thermal or process noise, or clutter from

a vehicle not being tracked), and (iii) the vehicle being tracked. The

observations are thus given by [1,2)
Z
k

= U
k 

(3.2)

where the p x 1 vector is a zero mean , white Gaussian sequence with

covariance E{uku } —

17
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Uk : Zk 
= ck x(k l k-l) + ‘

~k ( 3.3)

where x(k l k—l) is the one—stage prediction of X
k 

and U
k 

is a white,

zero mean sequence with covarlance E {v v I = 
~~ 6k m  kkm

3Hk : Z
k 

= ckxk + uk (3.4)

The noise sequences W
k~ 

V
k
) and Uk are mutually independent and

are uncorrelated with respect to the initial state x
0 

which is multivariate

normally distributed of dimension n with mean 
~~~~ 

and covariance V0,
N Eu 0, V0].

It is well known that the optimal Bayes estimator for this

problem involves an evergrowing memory and is hence not feasible.

This is because the estimate of at each stage depends on the

sequence of past true hypotheses. This sequence, however , is un-

known and hence the estimate must be averaged over all possible

past sequences. This corresponds to the unsupervised learning

problems in pattern classification. It is clear that as the number

of stages increases, the total number of sequences over which the

estimates must be averaged increases very rapidly. We , therefore ,

need to resort to suboptimal schemes which use a fixed memory.

There are basically two approaches which can be taken to solve this

problem. We can use a fixed number , say K, of past observations in

arriving at our estimate. Alternately, we can use all past obser-

vations in our estimation scheme but choose only one (or more generally ,

a fixed number N) of possible past sequences over which to average . -

r
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A few such schemes have been discussed in the literature . A statistical

test is used in [ 3,4] to eliminate the likely extraneous returns.

The number of sensor returns can be further reduced by combining

identical observations from the most recent N stages [1). This

is essentially an estimator based on an infinite sequence of hypo-

theses and a f inite sequence of observations. An alternative has

been studied in [5] , which Is essentially an estimator based on an

infinite sequence of observations and a finite sequence of hypotheses.

Either of them requires a tremendous amount of computation. We now

present the s t ructure of a probabilistically supervised estimator which

uses a probabilistically supervised learning sequence to determine the hypothesis

corresponding to each sensor return and thus eliminate extraneous returns.

The estimator Is compared with two other suboptimal estimators in terms

of performance and computational requirements. Simulation results are

presented to show the applicability of the probabilistically supervised

estimator.

3. 2 Probabllistically Supervised Estimator

In generating a probabilistically supervised learning sequence ,

one has to design a probabilistic judgenient at each stage of observations,

on the sensor returns [6]. This judgement is carried out in parallel

on each sensor return , in such a way that each return is assigned a

classification label which then serves as its true hypothesis. We can

think of the scheme as consisting of a set of parallel processing units

(PPU) ,one corresponding to each of the sensors, and a central processing

unit (CPU) which combines the processed returns from the PPU ’s to update

the estimate of the target track , On receiving the observations, each

19
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PPU perform s a random labelling test to generate a label £
k corresponding

to each of the three hypotheses. The label is then accepted as the true

hypothesis at that stage. Depending on the label, the observation from

the ~th sensor is modeled according to Eqs . (3 . 2 ) — ( 3 . 4 ) b y the corresponding

PPU. The algorithm for combining the observation models supplied to obtain

the track estimate is discussed later.

We can now consider the generation of the random labels.

Suppose there are M sensors and that at stage k, there are tk 
returns,

< M. Let denote the label generated by the ~
th PPU at stage k

and let L(k) be the vec tor

L(k) = [t~ i~ . ~~k 1T

Let L~ denote the set of all past labels L(j), j = 1 ... k.

Similarly let z~ denote the t- sensor return at stage k and

let TT T fl
1 2

Z(k)=[zk Z
k 

. .Z
k ~

Let Z~ denote the set of all past 
observations Z(j), j 1...k.

i
Since there are three hypotheses , the label is a ternary random

variable. When a new measurement z~ + ~ 
is received , the PPU updates

the probabilities associated with the three outcomes on the basis of

4 + ~ the past measurement sequence Z~ and the past labelling se-

quence L~. We can then write for these probablities

f ( L 1 — H ~ IZ
1 M M

k+l k+l k+l’ 
Zk, Lk)

f(z~ J~
,1 =H~ 

H M f ( 9~i =H~ Iz M L~k+1 k+l k+i’ Zk, Lk) k+l k+l k’ k~ (3.5)

- f(z~~1IZ~, L~) 
-
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where

f ( z~~ 1I Z ~~, L~ ) = 
~ 

f ( z ~ ÷1 I 2. 1 
=H~ Z~~, L~) f ( 9 ~~1I Z ~ , L~ ) (3.6)k+l k+l ’

j  =1

for i — 1, 2 . . . nk; j 1, 2, 3

If  we assume that the hypotheses are independent from stage to stage,

we can write -

f(L1 =H~ Jz~, L~) f(~~~1 ~
Hk+l) 

(3.7
k+l k+l

For Markov—dependent hypo theses , we have

= ~~~~~~~~~~~~~~~~ 
(3.8)

i I j
It only remains to determine f(zk÷l12.k+l H.K+l~ 

Z~ , L~). From the observation

model , Eqs. (3.l)—(3.3), we can write

~~~~~~~~~~~~~~~~~~~~~~~~ 
N ( O ,Rk+l] 

for j 1  (3 .9a)

— N [C 
~~~~~~~~~~~~~~~~~~~~~ 

- for j 2  (3 .9b)
p k

N [C +l~ck+lIk~~k
),ck+lvk÷lIk~~k k+l R

1~~.
]

p k
for j 3  (3 .9c)

Define -

~ 4~1—E(4~1JL~, Z~ } (3~.lO)

which is a white sequence. -

Let y
~~1

(L
~+1) be a collection of the white sequences

associated with all the sensor returns.

It then follows that the equations for the sequential estimation of the

state Xk 
are given by

2k+lIk~~k~ 
— 

~~~~~~ (3.11)
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~
Jk+1Ik(Lk) 

= 

~k
Vk(L

~
)4
~ 

+rkQkr~ 
(3.12)

Xk+l(Lk+l)=V (L
M 

)(CM )T(~~~~)1 (3.13)
k+l k+l k+l

. M 
= 2 (LM)+l( ~~~~~~~~~~~~~ (3.14)X

k+l ~
Lk+l) k+l 1k k k+l

and

Vk+l
(L
k+l) 

= (I_ 1
~+l

(L
~+l)C

~+l )V k+lIK
(L

~
) (3.15)

where -

= dIag[R~~1, ... , R~~1 1 (3.16)

Ec1s. (3.5)—(3.l6) constitute a complete set of algorithms for updating

the estimate.

3.3 Evaluation of Probabilistic Estimator

We will now briefly describe two subop timal estimator which

have been discussed in the literature for purposes for comparison

with the probabilistic estimator. In the first scheme, the infinite

sequence of hypotheses is approximated by a sequence of fixed size.

This scheme is referred to as suboptlmal estimator of finite memory .

The othe r scheme is to eliminate the likely extraneous returns by constructing

a gate test. This is referred to as a suboptimnal estimator with gating.

3.3.1 Suboptimal Estimator of Finite Memory

The conditional density of one—stage predictor f(xk+l Jak÷l,Z~)

depends on all the past sequences a
k÷l and requires an evergrowing 

-

amount of core memory for its implementation. The sequence ak= (%,~~~~
,al

)

22
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could be approximated by a subsequence bk taking the most recent N

elements, bk~
(a.
~
,1
~~

,ctk_N+l). As the memory size is restricted to N, the

earliest element ctk N+1 is not used in evaluating the conditional

-density of one—stage predictor. In oth~ r words , f (x k+l tak+l
,Z
~

) is an

approximated gaussian with mean 2k+l (b~
) and var iance V

k+lIk
(b
~
)4 where

b — 
k~~~~

,ak_N+2~~

As a consequence of the approximation , the following equations

hold

f(x
k+llb k+l ,z

~+l) = N [ 2
~~~~Jk

(b
~

) , Vk l I k (b
~

) ]

if a.
~+l = H

~+l - (3.l7a)

if a = H2 (3.17b)
k+1 k+l

— N 
~
2’K+l 

(b
k+l

) ,V
k+l

(b
k+lfl

• 
- if = H

~+i 
(3.l7c)

xk+llk(bk) ~kxk~~k) (3.18)

Vk+ llk
(bk

) = 

~k”~k~”k~~k 
+ rkQkr 

- 

- 

(3.19)

E k(b )•f (bkfZ
~
)k w

ak N+l -

~~ (3.20)

~ f(b IZ~
)v k

ak N+l -

E v
k

(b
k
)•f

w
(b
klZk
) -

- (3.21)V
k

(b
k
)

£ f(b-w

_______ 
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~~+l(bk+l) ~ 
2
~÷i. k

~~k~ 
+ 

~S+l
(b k+l ) [

~~+l
_C
~÷1

2k+l Ik~~k~~
(3.22)

~~+l (bk÷l) Vk+l (b k+l)(c~+l)
T(R

~+l)~~ (3.23)

V (b ) =k+l k+l [I — 

~~+l (b k÷l
)
~~~÷l

]V
k+ lIk(b

~
) (3.24)

L
~~+l (bk÷l ) fw O)k+1I +l) (3.25)ak+l ak N+2

V Z •..Z Vk+l(bk+l)•f (bk+l tz k+l) (3.26)k+l
ak+l cxk N+2

The weighting coefficients arc updated by
-~~~ 

fw thk+l IZ~+l 
f(z~~1 Ib k+l , Z~ ) f (b

k÷l IZ~)) (3.27)
f(z~~

1JZ~) -

where

f(z
~+lJb k+l,z

~
) = N

i [0,R
~+1] 

-

if a
J~f1 k+1 (3.28)

- if a~f1 = Hk+l (3.29)

H 
k~~k

))c
k+lVk+lJk~~k

)
~~k+1) + R

~+i
]

if 
~k+1 (3.39)

where £ denotes the number of sensor returns at stage k+1, and

t could vary from stage to stage.

f (z~+1lZ~
) Z 

~ 
f (z

~÷l Jb k+l ,Z~
) 1f w(bk+l I Z ~

) (3.31)
czk+l ak44+2 

-

fw~~k+l 12~~ = f (a jb ,Z~)’Z fw
(b
kIZ~
) (3.32)v k+l

°k-N+l 
-
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f~
(
~ +i I~~i2~

) - P(a
k÷l
) for independent hypotheses (3.33a)

— P(ci,
~+l !ct.K) for tnarkov—dependent (3.33b)

hypotheses

It Is noted that  the suboptitnal est imator of memory size N

is identical to the optimal estimator under a single return and the

suboptitnal est imator  deviates from the optimal estimator for k > N.

The sufficient statistics at the transition stage k = N are LL, (b
N
) and

VN
(bN

) , which are not valid for evaluating the density of the one—stage

predictor. Because of the restriction to mos t recent N stages , the

stage k—N+ 1 cannot be used In evaluating the density of the one—stage

predictor. This can be overcome by ~
4mply averaging 2

k
(b
k

) and V
k

(b
k
)

with respect to the weighting coefficients at stage k—N-fl

= tI~
(b
k
) fw~k 1Z~a

k N+1

and

Vk (bk) a Vk (bk) f
w (bk k~

)

3.3.2 Suboptimal Estimator with Gating

In this scheme , only those sensor returns which pass a certain

gate test (3,5] are considered for updating a particular track. Note

that the innovations [7] corresponding to the correct return at stage k

is approximately normally distributed with zero mean and variance

C
k
V
kIkl

C
~ 

+ R
k
. It is well known that

114 - Ck2~ J k l  It~ v cT + R ) 1 
(3.34)

k klk-l k k 

~~~~~~~~~~~ ----•~~~~~~~~~~ 
_ ___



V

has a p degrees of freedom chi—sciuare d is t r ibut Ion. The gate test is

to select the threshold in ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ which—--—- —. -S. 
~~~~~~~~~~

the quanti ty in Eq. (3 .34) falls in the right tail is rejected in order to

eliminate the extraneous returns. Hence the number of validated returns

could be limited and utilized in track updating. -

It is assumed that there is a nonzero probability of incorrect correlation.

Let the set of validated returns at stage k+l be

II 1 £ -
Zk+l — {z k+l , 1•

~~
,zk÷1

} (3.35)

and the accumulated val idated re turns  up to stage k-fl be 
-

H H M
— {z k+l,

1s • ,z
l
) 

- 
- (3.36)

- Define at each stage , the events

{proper return is detected but it is not correctly
- 

correlated i U {proper return is not detected}

and

{z~~~ is coi~rectly correlated at stage k+1)

where I 1,2 ,’•• , t ; and k — l ,2 , ••  . Assume that are mutually

exclusive and equally likely even ts, and that {z
~+1,...,

z
~+j
) are jointly

independent and identically distributed. The probability of event

is , for simplicity, assumed constant and known a priori.

The minimum variance estimate Is

k+1 
— J xk+l

f (x1~+l Iz k+l ):xk+l 

I 

- 

M
— 

~ I ~~+1~~~k+l i 2k+l ,Ak+l)dxk+l
s 
~w~~k+]i 

Zk+l
)

1—0

- — 
~ 

xk+l(Ak+l)Sfw (A
k+l~

Zk+l) 
(3.37)

1—0
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The variance associated with the above estimate is obtained as follows
-- - 

-

V = 1
- k+l j  (xk+1

_2
k+l) (x k+l

_2
k+l
)Tf (x.K+l I Z~÷l)dx k+l

2.
a 

~~ 
Vk+l (Ak+l)f (Ak+l Izk±l) 

- 

-

1—0

2.
A AT+ 

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- Xk+lXk+~1—0

(3.38)

It is to be noted that the variance is the sum of weighted variance

plus a positive semidefinite mat r ix  to incorporate the ef fec t  of the

extraneous measurements [3].

The conditional a posteriori density is calculated as

H I
I M f (z k+l fxk+l ,Ak+l ,Z

~
)5f(X

k+l lA
~+l~

2
~
)

z ) — —~ ~~~ k+l f (z~~1 A~~1, Z~) 
- - (3.39)

The above expression can be simplified by making use of the assumption

ason

I I
f (xl(+lIA~ 1’ ~ — I H+1’ k-fl 

f(4+lJA k+l
,Zk) (3.40)

In evaluating Eq. (3.40) , the following should be noted :

1. The conditional density of one—stage predictor is independent

of A~~~, and Is equal to

2 • f (4+~ I x~÷~ , , Z~ ) — N (Ck+lX~+1 , P~~1) for I — 1,2,... , 2.;

and either N [0,Rk+j
] or N [Ck+l

Qk+jIkP
Q
k+ll for 1—0 .

It is clear from the above that the conditional a posteriorl density can

- therefore be written as:
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I H A I I
~~xl+l Ak+l ,zk÷l

) = N [ x k+l (A k+l ) , Vk+l (A k+l ) ]

for I l,2,.~~ ,2. (3.41)

V ]
n k+llk’ k+lIk

for i 0  (3.42)

together with the following equations for updating the sufficient

statistics,

2k+l (A
~+l) = Xk+lIk ÷ ~S+1(4+l )[4÷l

_c
k+l2k+ljk] (3.43)

Kk+l (Ak+l) V
k+llk

Ck+l ICk+lVk+lIkCk+l + R
k+l
) 3.44

I I
= — Kk+l~~ k+1~~ k+l k÷1Ik (3.45)

As expected the gain K,,~÷1(A
~~ 1
) is independent of A~~.1 and is

the same for each validated return.

The weighting coefficients are calculated as follows :

14 1 14
I N f ( z

k+l,Ak÷lIZk)Since fv(Ph1~+lIZk+l) 
= M Mf (z k+l JZk

)

i I H

— 

f ( z k+l ,Ak+l Zk)

f (z
k÷lIZk

)

(3.46)

It follows from the preceding that

- 

~~~~~~~~~~ 
— f~ (Aj~+1I z ~+1,Z~

) 
- 

-

1 —

£ (3.47)

where P(A
~+1IZ~+1) is known a priori [3].

Equations (3.37), (3.38) , and (3.41)—(3.47) constitute the necessary

- set of equations for recursively up dat ing the sufficient statistics.
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3.4 SImulations

In order to evaluate the performance of the probabilistically

supervised estimator and to compare it with the other estimators, the

same tracking example given in [1] was simulated. The parameters of the

aircraft being tracked are given as follows

x — position at stage k 
- 

-

x — speed at stage k
— 

y — position at stage k

y — speed at stage k (4 1)

~~change in x—speed between 
stage k and stage k+11

— 

in y—speed between stage k and stage k+lJ (2~~ )

3. T 0 0 

-

0 1  0 0

k 0 0  1 T

0 0 0 1
_ (4x4)

0 0 -

- 

1 0 ~~q11 k 0 1rk~ 
and 

~k I
0 0 

[o q22 (k)~~
0 1 — (2x2)

• (4x2)

where T Is the sampling Interval

[1 ~ ~ [i11 k 0 1
[o 0 1 0 (2x4) 

1
~k 

— [ 0 Y22 (l
~~I (2x2)

29
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For simplicity, the following values are used

T 2

p — 0

~TF — 0.01 
- 

-

mnultivariate nortnally distributed with dimension four ,

t14 [0 I 0~01~]~ 
- 

-

— diag[0 ,0]

and
- diag (0.00828 , 0.00828]

Simulation results are presented in the form of tables for the mean square

- 

error associated with the x—positioLt. Similar results were

also obtained for the other states.

The simulations consist of a comparison between the three estimators

presented in this chapter , namely Suboptimal Estimator with Finite Memory

(SFE) , Suboptimal Estimator with Grating (SGE) and the Probabilistically

Supervised Estimator (PSE) . One hundred simulations under a single return

were averaged to obtain the mean square errors. The probability of the

hypotheses were P(R ~ ) — 1, P(H~) — P(H~)=0. The results are shown in Table 3.] .
which ~lso shows the mean square error for the optimal Bayesian Estimator

(OBE). For the simulations, an infinite gate size, unity detection probability

of sensor and P(A
~+1lZ

~+1
) — 0 were assigned to SGE and a memory length of

two stages to STE. The simulations were carried to only five stages be—

cause of the comnputational requirements associated with OBE . The performance

of all the estimators is equally acceptable under these conditions.

30
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Table 3.2 shows the results for the case P(H~) = P(1j~) = 0.1 and P(H~)”0.8.

The decrease in MSE for the PSE is not as fast as with the OBE and SFE.

However , as shown in Table 3.3 the PSE has decided advantages in terms of corn—

putation requirements.

The second part of the simulations consist of a comparison between PSE

and SFE. A one—hundred—step process under five ground sensors was simulated

on the same model. Ten simulations were averaged to obtain the mean square

errors and varinaces. In Tables 3.4 , 3.5 and 3.6 ,it is shown that the performance

of PSE is better than that of SFE in all the possible cases. This fact

bedomes more pronounced in the most uncertain environments in which P(H~)11 0.2,

P(H~)—P(H~)~ 0.54. - - - -

For the case of dependent hypotheses transition probabilities

P(4+1fH
~

) wer~ chosen as -

2 3

— 1r0.8 0.1 0.1

21 0.1 0.8 0.1 I
3[0.l 0.1 0.8 

-

The process was started initially with equally likely probabilities

of hypotheses. The results shown in Table 3.7 indicate that the performance

of PSE Is quite acceptable in this case.

I 

“-

~~~~~~~~ 
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TABLE 3.i

MSE of PSE , OBE , SFE , and SGE ; P (H~ ) 1

Stage PSE - OBE SFE SGE

1 .02539 .03300 .03300 .02675
2 .01790 .02109 .02109 .02331

3 .03262 .03301 .03301 .03466

4 .03333 .03202 .03202 .03768

5 .03079 .03107 .03107 .03195

TABLE 3.2

MSE of PSE , OBE , SFE, and SGE; P(}f~)=P(H~)=O.1

and P(H~)=O.8

Stage PSE OBE SFE SGE

.34901 .20144 .20144 .17598

2 .13036 .12237 .12237 .22925

3 .18304 .11934 .14284 .26749

4 .21962 .08673 .11383 .28088

5 .14741 .07520 .09133 .47075

TABLE 3.3

- Percentage of Time and Core Locations

Time1 Core 2
___________ _________________ Locations

PSE 6 48
OBE 100 100
STE 16 65

SGE 6 59 -

1. Percentage of the computer time required by the
optimal filter. 

-

2. Percentage of the core locations required by the - - -

optimal filter.
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TABLE 3.4

MSE .of PSE and SFE; p (H)~~ — 1

STAGE PSE STE - -

10 .00153 .01967

- 20 .00101 .00589

30 .00022 .00294

40 .00025 .00196

50 .00019 .00136

60 .00017 .00101

70 .00016 .00077

80 .00019 .00058 -

90 .00014 .00042

100 .00010 .00033

--TABLE 3.5

MSE of PSE and SFE ; p(H~ ) — p(H~) 0.1 and p(}1~) — 0.8

STAGE PSE SFE 
-

10 .02071 .01439

20 .00283 .02314

30 .00159 .01425

40 .00065 .02270

50 .00037 .03167

60 .00025 .05524

70 .00021 .07709

80 .00022 .07149

90 .00019 .09386

100 .00012 .10536
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TABLE 3.6

MSE of PSE and SFE; p (H~) — 0.2 and pO {~) p (H~) — 0.4

STAGE PSE SFE

10 .69687 .10443

20 1.13143 .09342

30 .45878 .08765

40 .37909 .19294

- 
50 .32131 .26892

60 .22679 .48263

70 .19707 .59716

80 .16257 .75582

90 .11455 .87802

L 
100 .10383 .98750

TABLE 3.7

!4SE of PSE and SFE; Markov-dependent hypotheses

STAGE PSE SFE

10 .13949 1.44858

20 .09721 1.37159

30 .10936 1.06421

40 .15072 .76816

50 .23789 .74486

60 .25945 .89461

70 .28760 1.14302

80 .30237 1.09317

90 .34798 1.30457

100 .39394 1.97090
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4. COUPLED RISK FORMULATION

4.1 Introduction

It has been pointed out earlier , that in all problems involving

uncertainty of signal reception, the operations of detection and estimation

are intimately coupled . The optimal processing of sensor returns requires

the mutual coupling of the costs associated with both operations. Signal

estimation is strongly influenced by the detector ’s outcome . A Bayes’

optimum theory of joint detection and estimation of signals in noise

has been studied in [1—4] by using a generalized cost function which

reflects the mutual coupling between the joint operations.

An estimator based on minimizing such a coupled risk may perform

better than the estimator in which the two operations are treated indepen-

dently. This improvement in performance, if any, will however be at the

cost of added complexity in the receiver. In this chapter a simultaneous

detection and estimation scheme is developed for situations where the

signal evolves as a stochastic process and uncertainty characterizing the

presence of the process in the observation varies in the fashion discussed

in Chapter 2. Since the optimal processor again requires an ever—growing

m~nory, a finite memory suboptimal scheme which minimizes the coupled risk

is developed . The performance of this suboptimal processor is compared

with that of the probabilistic estimator introduced in the previous chapter.

4.2 Coupled Risk Formulation

There are two different kinds of risks associated with joint detection

and estimation: uncoupled risk and coupled risk. In the uncoupled risk

case the minimization of compound risk is- equivalent to the minimization

of the individual risks associated with the detection and estimation pro—

blema respectively . The minimization of the decision risk leads to the
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familiar likelihood ratio test [1). The minimization of estimation risk ,

however , yields the problem in which the estimator ’s performance is to be

optimized under uncertainty [5,6]. In coupled risk case the joint oper-

ations of detection and estimation should be coup led and the costs associated

with these two operations chosen to reflect the interaction between them .

Hence , the total risk of joint detection and estimation can not be expressed

as the sum of two independent components. A simultaneous minimization of

the total risk with respect to the decision and the estimation rules is

necessary . Joint detection and estimation of coupled risk has been studied

in [13 ,15] under a single return . This section is devoted to the formula-

tion of the problem of optimizing a coupled risk function under 
multi—sensor returns.

To reflect the coupling between detection and estimation, let

Ci4(xk~
xk
) be defined as the cost of choosing the hypothesis r~ and making an

estimate when, in fact , the hypothesis is true and X
k 
is the true value

of the signal. in other words, C1~ 
(
~k

,x
k

) ,  tha cost at stage k, can be ex-

pressed as

— ~ 2 
~41)C

ij
(x
k~

x
k
) = LIj+F j j J I x k

_.xk~~I

where L and F . are chosen appropriately’ to indicate  the interaction be—
ij. ii

tween the joint operations of detection and estimation.

The corresponding coupled risk is given by

R — 
jal i=l J~ ~~~~~~~~~~~~~~~~~~~~~~~~~ -

Here ~ is the observation space and Li.~ is the region in which the decision

is true so that ~ — 

~~ 
‘

~~~~~
, 0 is the signal space, and refers to all the past

sensor returns accumulated up to stage k.

The optimal decision is then to decide in favor of hypothesis ~~ 
when

the following inequality

- - - -

~

‘_ __

~



f C
~ j
(
~k

,x
k

) f ( x
k
,H
~
,Z
~

)dx
i=1 ~ k 

~~~~ 
f ~~~~~~~~~~~~~~~~~~~~~~~ 

(4.3)

is satisfied for all i~j; j,2~=l ,2,3.

The estimator that minimizes the coupled risk of Eq. (4.2) is defined

as the optimal estimator under multi—sensor , uncertain environments . The

corresponding optimal detector is given by Eq. (4.3). Again it i& not feasible

to implement the optimal estimator and the optimal detector , because of the

need for evergrowing memories. Therefore the suboptimal alternative must

be resorted to.

4.3 Suboptimal Estimator and Detec~2~

In this section , a suboptimal estimator with finite memory require-

ments for the cost function of Eq. (4.1) is developed . It is under$tui)i1 that

if the decision is that either fl~ or r~~ is true , there is no up dat ing in

the estimate. Hence , there is no cost incurred for estimation when either

1 2
or is decided. In Eq~. (4.1) Xk 

appears only when, in fact, r~ ía true

(j=3).

The cost associated with the joint operations is described by the

following equations ,

Cj1(k~
x
k
) = L11, 

-

C12 (2
k
,x
k

) = L12,

Cl3(~k
)x
k

) = Ll3+F
l3
X
~
X
k
, . 

-

C21(~ x ) = Lk 21’

C22 (x
k~

x
k
) = L22

C23 (x k ,x k ) = L23+F
23
x
~
xk,

C31(x k I x k ) L3l+F3l~~~ k ,

c32 (x
k
,xk

) - L32+F32~~~k,

and C33(~k,
x
k

) L33+F33 (x
k
_
~k
)
T(x

k~~k
)

38 - 

-

— _ ---;_ _.4 _ _ _ _ _ _ _ _ _ _  
S - - 

_ _ _ _ _ _ _ _  — — — - --———-— - —

~~~5 - , -



P The estimate is obtained by minimizing Eq. (4.2) with respect to

This is equivalent to minimizing

~ J i~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
(4.4)

i—i

with respect to Since the cost C .j (x
k~
x
k
) is of quad ratic form , the

minimization of Eq. (4) yields the weighted conditional mean estimate

** 
1
33 J x

k
f (x

klak H~ ,Z
M)dx ~f (a = H3IZ~

)k k w k  k
X
k

F f (a = H~IZ~) (4.5)
1=1 31 w k

.~~ 
F
33~~

(ak
)f 3(a

kIZ
~
) 

-ctk l  a
=

-3

~ F f 1(a IZ ”) (4.6)
3iw k k

1=1 a~~1 a1 -

where

A3 3
(4.7)

f1(a tz
M
)=f (ci-=H’,akl,...,al Jz

~
), (4.8)w k k  w k k

and -

ak 
= (a

k.ak l ~
. . .,a1

).

The corresponding suboptimal estimator of finite memory which uses all the

observations from the most recent N stages is given as follows

F
33~~~

(b
k

)f 3(bklz~
)

a~~1 ak N + 1
k 3 - (4 ,9)

~ ~ 
F
31f~

(b
k!z~

)
i-i a)~~ ~k-N+l

where 
~~
(b
k) 

=
3

f 1
(b1 I Z ~ ) - f

W
(a
k
=h1
~
,ak_l,. ..,ak N+l IZ

~
),
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1
and bk 

—

It is to be noted that the set of necessary equations for updating

the estimate , the variance , and the weighting coefficients is identical

tO those derived in Chaoter 3.

The decision rule is~postulated in Eq. (4.3), and the observatioi:

space t~ is partitioned into three disjoint regions.

Region in which is true is true is bounded by the following

inequalities. -

i~~ 
J~ 

C
li
(
~k~

x
k
) f (x

k
,H
~
,Z
~
)dx

k

< 
~ 

10 C~ i(
~k

,x
k

) f ( x k , t!
~
)L
~
)dxk

, £ = 2~3 (4.10)

In order to evaluate these inequalities one has to substitute the cost de-

fined in the beginning of this section into Eq. ( 4.10) and recognize the de-

finition of the covariance matrix

1 x
k
x
k
f(x

ktak
=Hk,ak l ,. . .,dk N÷l

,Z
~
)dx

k

= V ~~(b k) + 
~~

(bk)~~~
(bk)

T (4.11)

Thus -

xkxk
f (x

klak=Hk ak l’••• P
ak N+l~

Z
k)dxk

— T V
~

(b
k
) + ~~ (bk ) T

~~~ (b k
) (4. 12)

where V
~

(b
k
)=V

k
(a
k
=H
~
,akl,...ak_N+l ), and T

r
V
~
(b
k
) denotes the trace of

the matrix V
k

(b
k
).

De f ine

A — ... 
~ {(Lll

_L
2l)~

f
~
(bk IZ

~
) + (Ll2

_L
22

)f
w
(bkIZ

~
)

ak l  ak N+l
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~
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~
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~
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k
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B ~~ ~~~. . .
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3l)f~~bklz

~~ 
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~
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+ (L,3~L33
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f2(bklZ
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T
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( S.~*)
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(b ))  .f
3
(b J Z
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)}

(4. 14~and

C~~~B - A .  - (4.15)

- I
It is noted , from che definition of cost incurred for joint detection

and estimation , that the estimate in C
ij
(
~k~

x
k
) should be essentially

replaced by of Eq. (4.9).

Upon substituting Eqs. (4.13) and (4.14) into Eq. (4.$), one can deter-

mine the boundary of region 
~~~~~~

. it can easily be shown that the region 
~~

is bounded by MO and B<O. It similarly follows from Eq. (4.3) that the region

is bounded by A>0 and C<O , and the region is bounded by B~O and C>O

It is noted that t~ie decision boundaries determined by Eqs. (4.13) —

(4.15) are equivalent to the boundaries determinec by s~~ttiu~ up the modified

generalized likelihood ratios [151.

The procedure to generate the optimal decision is summarized in

the following :

Step 1. Evaluate A and B, respectively using Eqs. (4.13) ane (4.14)

Step 2. Validate one of the following three statements:

U) A<O and B<O , decide

2(ii) A>B and A>O , decide
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(iii) B>A and B>O, decide

Step 3. Calculate the optimal estimate

(i) Either or is true , estimate is not updated ;

X
k

X
k J k—l

(ii) ~~ is true , estimate is updated ;

This scheme will now be compared to the PSE scheme introduced in

Chapter 3 • The coupled risk formulation is not particularly meaningful to

the PSE , since the estimate is updated no matter what hypothesis is true.

Thus , rather than comparing the two schemes in terms of the coupled cost ,

it would appear more appropriate to compare the two in terms of the per-

centage of wrong detection and the variance of the estimator.

4.4 Simulation Results

The message model and the observation model chosen for joint detec-

tion and estimation are the same as those of Chapter 3. The values of

matrices L and F in Eq. (4.1) which are assigned to the cost of maUng decision

and the cost of making estimation respectively , are

[0 l 1 1  ~~~O l 1
L =  Ji 0 iJ F —  Jo 0 iJ

~~~i oJ f t l~~~J

for the suboptimal estimator and detector of finite memory. The values of

matrices L and F also indicate the interaction of coupling of the joint

operations, which is weighted equally in this case.

A one—hundred—step process was simulated and ten runs were averaged

to obtain the results such as variance and percentage of wrong detection

under .five ground sensors. It is assumed that the a priori probabilities

in the case of. independent hypotheses and the transition matrix in the

case of markov—dependent hypotheses are known to the receiver.

-
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TABLE 4. 1

Variances of PSE and SFE; P (H ~ ) = 1.

STAGE PSE SFE

10 .00056 .00056
20 .00030 .00030
30 .00021 .00021
40 .00016 .00016
50 .00013 .00013
60 .00011 .00011
70 .00009 .00009
80 .00008 .00008

- 90 .00007 .00007
100 .00007 .00007

- 

- TABLE 4.2a

Variances of PSE and SFE~ P( ll~).~p(1-1~)’..i and

STAGE PSE SFE

10 .00083 .00085
20 .00041 .00043

— 30 .00027 .00029
40 .00021 .00021
50 .00016 .00017
60 .00013 .00014
70 .00012 .00012
80 .00010 .00011
90 .00009 .00009
100 .00008 .00008
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TABLE 6.2b

Z Wrong Detection of PSE and SFE; P(}1~)~ P(H ~)=.l and

STAGE PSE SFE

10 22 20
20 26 20
30 14 .18
40 24 16
50 22 14
60 10 16
70 42 14
80 10 24
90 16 14
100 32

TABLE 4.3a

Variance s of PSE and SFE; P(H~)=.2 and

-STAGE PSE SFE

10 .00239 19106
20 .00109 .03719
3O .00065 .00131
40 .00049 .00071
50 .00035 .00054
60 .00029 .00043
70 .00026 .00036
80 .00023 .00030
90 .00021 .00026

p 100 .00019 .00022

t
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- TABLE 4.3b

2 Wrong Detection of PSE ~nd SFE; P(1l~).2 and P(I1~)=P(H~)=.4

STAGE PSE SFE

10 46 60
20 50 64
30 46 56
40 48 50
50 38 58
60 34 56
70 36 56
80 32 64
90 40 50

100 40 54

TABLE 4.4a

Variances of PSE and SFE; Markov—dependent Hypotheses

STAGE PSE SFE

10 .00385 3.48371
20 .00090 5.25671
30 .00102 5.17088
40 .00058 4.11383
50 .00055 3.63712
60 .00041 2.86978
70 .00030 2.31418
80 .00025 1.46436
90 .00023 1.02339

100 .00021 .70642
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TAbLE 4.4b

2 Wrong Detection of PSE and SFE, Markov—dependent Hypotheses

STAGE PSE SFE

10 48 64
20 36 74
30 36 74
40 26 66
50 30 62
60 - 38 58
70 32 62
80 38 56
90 42 64

100 48 66

TABLE 4.5

Overall 2 Wrong Detection of PSE and SFE

CASE PSE - SFE
P(H~ ) = 1  0. 0.

P(H~ ) = P (H~) = .l,P(H~) = .8 18.16 -21.36

P(H~) = .2,P( 1I~ ) = P( H~) .4 42.30 57.90

Ma rkov—dependent 35.18 63.48
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p

The variances shown in the fi g ires of this chapter are the variances

associated wi th the first componen t of the state vector.

For the case of P(H~)”1, both schemes perform equally well and have

zero percentage of wrong detection. The averaged variances at particular

stages are shown in Table.s 4.1, 4:2a, and 4 3 ~ 
for the case of independent

hypotheses. As expected the variance of PSE is lower than that of SFE.

The improvement of performance of PSE over that of SFE becomes pronounced

in the markov—dependent hypotheses case shown in Table 4.4a. The averaged

percentage of wrong detection at particular stages are shown in rabies

4.2b, and 4.Th for the case of independent hypotheses and Tahle. 4.4h

for inarkov— dep endent hypotheses. The overall averages of percentage of

wrong detection are shown in Table 4.5. It is expected that the percentage

of wrong detection for PSE is lower than that of SFE , and it is approximate—

ly fifty percen t lower than SFE for the case in which the hypotheses switch

in markov manner. 
-

The structure of SFE developed in this chapter is very complicated

in the sense that  it takes a larger amount of computational requirements

such as execution time and core locations as compared to those taken by

the PSE. The simulation results clearly show the superiority of the PSE

as compared to the SFE designed using the coupled risk formulation.
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5. TRACKING OVE R FADING CHANNELS

A problem encountered in many applications is that ot

distortion of the transmitted signal by the communication channel.

The distortion introduced by the channel can be characterized by

multiplicative disturbances which are responsible for such phenomena

as fading, dispersion and multipath [1]. As can be expected , the

presence of such phenomena complicates the problem of targe t

tracking in a multisensor environment. Exolicit algorithms for

the probabilistic estimator for this problem hav€ been derived and

its performance evaluated by simulations which confirm the advantages

probabilistic estimator. Details of the algorithms and the simulation

results are given in [2] which has been included as Appendix B of

this report.
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6. ESTIMATION USING QUANTIZ ED MEASUREMENTS

6.1 Introduction

In many practical situations , the observations are presented

to the receiver in quantized form. In general ,measurements will be

quantized if they originate from digital sensors , in digital trans-

mission systems or when processed by digital computers. In this chapter

we will derive algorithms for the problem of tracking a target in a

multi—target , multi—sensor environment , when the observations are in

quantized form, using the probabilistic estimator approach .

It is well known Ill that the problem of estimation with quantized

measurements can be considered to be equivalent to the estimation of

signals in the presence of additive white noise.

For a measurement equation of the form

z h(x , v) (6.1)

the conditional mean (minimum mean àquare estimate) of any function f (x)

given quantized measurements zcA where A is some region (e.g. a hypercube)

can be written as

E{f(x) (z s &} — E-(E[f(x) (z] (ze.A } (6.2)

Thus the required conditional expection is obtained in two steps : (1)

find E(f(x) Ia): this is the usual goal of estimation with unquantized

m easurements; (2) find the expectation of E(f(x) tz) conditioned on zcA.

-- 
For the case when

x ” N ( , M)

v N(0,R) 
-

a )Ix + v E(xvT) - o (6.3)
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where N(•,’) denotes a normal distribution whose mean and covariance

are the f i r s t  and second arguments , respectively , x is an n—component

vector , z and v are rn—componen t vectors , and H is an in x n matrix,

the following expressions for the conditional mean and covariance

are obtained (1)

E(xfzcA) = x + K [E(zIzcA) — Mx]

coy (xlz cA) = P + K cov(z l zcA) K
T (6.4)

where K is the minimum variance gain matrix , and P is the covariance

of x that would be obtained had the measurements not been quantized .

These results show that quantization increases the error variance 
of

the estimate as though it was noise added after the measurements .

Suppose a number of measurements are made at different times t~~,

1. — 1, 2 ... . Since the measurements at different times are correlated ,

the conditional density of z given the sequence of past measurements

will change as more measurements are taken . Thus , even though the equa-

tions may be solved recursively, E( z l zcA ) must be recomputed after each

measurement; this necessitates a complete solution of the equation af ter

each measurement is taken. We can, however, obtain an approximate re-

cursive estimate by assuming that the conditional distribution of the

state just prior to the i
th measurement is Gaussian with mean and vari-

ance given by Eq. (6.4). For example, let us consider the linear message

and observation models
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— - I Xk+l 
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~k 
X
k 
+ r

k 
Wk

= C
k 

X
k

zk ~
‘k 

+ U
k 

(6.5)

where x.~ is the n x 1 state vector, and 
~k 

is a p x 1 output vector.

The rn—vector u.~ is white zero mean gaussian with covariance

E{w
k

w }
~ ~k

6ke

Let us assume that the observations are quantized so that the estimate

of the state must ‘,e based on the information that

j 1 , 2 ... k (6.6)

It can then be shown E 2 , 3 ] that the approximate algorithms for esti—

mating x
K 

for the case when Rk 
is diagonal are given by

— X
kIk_ 1 

+ K.KDkdk - 
(6.7)

A A

— +k Xk l  
(6,8)

th
where represents a vector whose i component is

- A (f( [q~~l 1
) — f ( [ u

k
]j)] [q ] [b Ik i -k i[Hk

xkIi—

f([v
k
]j)d[vklj [U

k
]j 

— 
khi~~k~

C
kh i

J [
~~

] 
i

(6.9)

th
where f(’) denotes the density function of the i component of 

~k’ 
Dk

-La a diagonal matrix whose elements are

[(D ) 4T 
— 

~~
d
k
]
i

(d
kJ 

~~~~~~~~~~~~~~~~~~~~~~ 

J 

(6.10)
k Jii i 

.—

(R.J~]jjJ f([vk]j)d[vk]j A

i Xk~~kIk_].
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The filter gain and error variance equations are given by

K.~ — Vk
C
~ 

[CkVkC~ 
+ Dk]~~ 

A 

(6.11)

xk - xkIk_ l

V
k 
- ¼ [I - k_lCk_1]~

’k_l k + rkQkrk - 
(6.12)

We now derive the probabilistic estimator for the problem of

target tracking described earlier. Thus, the observation model for any

sensor, corresponding to the three hypotheses namely (1) noise alone

(e.g., cut—off communication link), (ii) false alarm (e.g. thermal or

process noise, or clutter from a vehicle not being tracked), and (iii)

the vehicle being tracked , is given as follows :

1Hk Z~ = Uk (6.l3a)

Z
k 

Ck x (kjk—l) + (6.13b)

: Z
k 

ck x.k + Uk (6.l3c)

6,2 Probabilistically Supervised Estimation with Quantized Measurements

We use the structure of the probabilistic estimator de-

rived in Chapter 3, in which a set of parallel processing units

(PPU ’s) is used to process the sensor returns. On receiving

the quantized observations, each PPU performs a random labelling test

to generate a label 2k corresponding to each of the three hypotheses.

The label is th2n accepted as the true hypothesis at that stage. Depend-

ing on the label, the observation from the ~~ sensor is modeled accord-

ing to Eq. (6.13) by the corresponding PPU. The algorithm for com-

bining the observation models supplied to obtain the track estimate is

discussed later.
We can now consider the generation of the random labels.

Suppose there are M sensors and that at stage k, there are returns,

n.~ < M. Let denote the label generated by the ~th PPU at stage k
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and let L,,~ be the vector 
-

- 
L~ — (6.14)

Let L~ denote the se t of all past labels , j 1 ... k.
Similarly let z~ denote the ~

th sensor return at stage k and

let TT T f l

Z (z’ z2 . . z k 3
T (6.15)

k k k k
Since the observations are quantized, we can write

i i —i
< z~ < b

k 
(6.16)

Let Bk 
denote the hypercube in nk

-.dimensional space corresponding to the

set of observations at stage k. Then
(6.17)

Z~ c B ~

Let denote the set of all past observations Z~ , j — 1, ... k. and
let B~ correspond to the quantized observations. Since there are three

hypotheses , the label is a ternary random variable. When a new meas-

urement z~41 is received , the PPU updates the probabilities associated

with the three outcomes on the basis of z~~1, the past measurement se-

quence B~ and the past labelling sequence L~. We can then write for

these probabilities

i j i - .J1 M M
~ (L~~~ — Hk+l ~ k+l 

< Zk+l < b~~1, ‘k ~ 3k, ~~

— ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
Z c B ~ ,L)~~

Prob(b~.~1 < ~~~ < ~~~~ c B~, L~) 
- 

(6.18)

where

Prob(b~~1 
< C B~, L~)

- 
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— 
~~

Prob (b
~+i<z~+1<~~+1 I ~~~~~~~~ Z cB

~
,L
~

) f ( &
~+i

”H
~+1 f Z c B ~,L~)

— c B~ , L~) (6.19)

for i — 1, 2 ... 
~k’ ~ 

— 1, 2, ~

If we assume tha t the hypo theses are independent from stage to stage ,

we can write

f (~~~1 — 1
~+l I~~ 

c B~, 4~ 
= 14+i) (6.20)

It only remains to determine f (z
~+i J L

~+i 
= H

~÷j, 
Z~ c B~, L~). Let

x
k÷lIk

(LII~
) denote the conditional expectation of x,~~1 

conditioned on the

sequences of past observations and labels. It then follows from the

measurement models of Eq. (6.13) that

— ~~~~ Z~ c B~ , L~) = N ( O , for j — 1 (6.20a)

— N
P

[C
k+l~k+lIk

(L
~
)
~

c2k+l(L~YI 
for j”2 (6.20b)

• N~ [C~~1~~~1 Ik (T
~k
) , Ck+lVk+l I k k ~~k+l4Rk+i)

- for j’=3 . (6.20c)

It only remains to evaluate Xkfl ~
(L~). Unfortunately, as discussed

earlier , the computation of this estimate is not easy even though the

signal and message models are linear, because of the quantized nature

of the observations. We can , however , use the approximate algorithms

of Sec. 2 to obtain the estimate x,~~1 k(Lk). We will restrict ourselves

to the case where is diagonal. The extension to the case of nondiag—

onal L
a 

is straight forward . Let ~~~~ denote the matrix

CM - ((C1 )Ti (C2 )Ti (cM 
~ 

(b.2l)
k+1 k+l ‘ k+1 • ••• . k+1



-- -~~~~~~

i Iand and u~ denote the vectors

I I I /
— 

~k 
— ckx;~I kf1 ~

. • a

I —i 1 6

i ch
Let dk denote the vector whose j  component is given by

— 

f([q~]~ ) — f ( [ u~]~) (6.23)

.1 i
i 

f ( ( v
k]j

)d[vk
]
j

~~ Si

where []~ denotes the 3
th 

component of a vector and f(.) is the (normal)

density function of the ~th component of Let D~ denote the diagonal

matrix whose elements are given by

— (u~]~ f([J~~Ji

)] 
(6.24)

‘ ~~~~ J ~ . 

f(tvkhj
)d
~~ku j

Let 

d~ - [(~~ ) Tt (d 2) T S (d~~ ) 
T 

(6.25)

and
1

D
k

1 D
21

— — I— k1~ (6.26)

I D
k

Then the algorithms for determining x
~.,.jIk

(L
~

) are given by
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r

X
k+lIk k

X
k (6.27)

A M M
X~~fj ( ~~ + K

~~.l
Dk+ldk+l (6.28)

where the filter gain equation is

— v
~~lIk

(C
~~l

) [ C k.Fl
v
k+lIk

(C
~+l) + D

~+1
J (6.29)

The error variance equation is

V -
k+llk k”k¼ 

+ r
kQk 

(6.30)

V -
k+1 - 

— 

~~+1~~+i~
”k+lIk 

(6.31)

Equations (6.18)—(6.3l) constitute a complete set of approximate algorithms

for estimating the state of a target in multisensor environments when

the observations are in quantized form.

6.3 Simulation

In order to determine the performance of the probabilistically

supervised estimator with quantized measurements, the same tracking ex-

ample considered in earlier chapters was simulated. The system narameters

are given as follows

rxi — x position at stage

I x~ — x speed at stage
Xk 1

I 

x3 
— y position at stage

[~4 - y speed at stage kj

— speed change between stage Ic and Ic + 11
— 

— speed change between stage Ic and Ic + LJ
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1 T O O

0 1 0 0

Ic 0 0 1  T

0 0 0 1

0 0

1 ~ 
~q11(k) 0 1

rb 
— 

0 0 
‘ 
~k 

— 

[o q22 (k)~

0 1

where T is the. sampling period.

1 0 0 o [~
r11(k) 0

CIc 
— [~ 0 i 0] 

‘ 
- 

r 22 (k)j

In the simulat ion , the following values are used

T — 2 sec.

p - — 0

‘
~TF — 0.01

multivariate normally distributed with dimension four,

N4 (0, 0.01)

• diag (0,03

— diag [0.00828, 0.00828]

Quantizer interval t~ — 2~~

— 0.03125
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I
£ — 5, number of sensors

Prob(H~) — Prob (H~) — 0.1

Prob(H~) — 0.8

A 40 stage process was simulated , and 80 runs were averaged to obtain

the mea~ square error. The mean square error in the x and y positions

for the first 10 stages are shown in Fig. 1. Table 1 shows a comparison

of the mean square error obtained using the probabilistic estimator 
as

given in [8] with the results obtained with quantized measurements.

As can be expected, the error is somewhat larger with quantized

measurements.

REFERENCES

[fl R. E. Curry, Estimation and Control with Quantized Measurements,
MIT Press, Cambr idge , Mass., 1970.

[2] K. Clements and R. Raddad , “Approximate Estimation for Systems
with Quantized Measurements ,” IEEE Trans. on Automatic Control,
April 1972, pp. 235—239.

[3] .1. F. Metraller, “Sequential Estimation with Quantized Measurements,”
Ph.D. Dissertation , Southern Methodis t University , Dallas , Texas ,
April 1972.

-- _ _  _ _

- --

.

~~~~~~~~~~~~~~~~~~~~~~~

S- -

~~~~~~~~~~~

--

~~~~~~~~~~~~

-- ----—-- —--- —

~~~~

- -

~~~~~~~~

—

L 
- 

— .— S -__ _ _ _  - —--______



TABLE I

MSE Comparison of PSE(Q), PSE

P(R~) — P(R~) — 0.1, P(K~) — 0.8

STAGE PSE(Q) PSE [8]

10 .02223 .02071

20 .01122 .00283

30 .00179 .00159

40 .00087 .00065
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7. CONCLUSIONS

This research has considered the problem of joint detection and

estimation of signals. A specific problem of tracking a target in a

multi—target multi—sensor environment was investigated . This problem

is somewhat typical of the type of problems encountered in this area.

In order to overcome the exploding computational requirements of the

problem, a suboptimal scheme which uses a probabilistic judgement to

eliminate extraneous returns was derived. Explicit algorithms for

tracking the target have been derived . The scheme was compared with

two other suboptimal schemes in terms of performance and computational

requirements. The tracking algotithms were extended to include cases

in which the observations are received over fading media or in quantized

f o rm. Simulation results indicate that the performance of the scheme

is acceptable under these conditions.
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APPENDIX B

Target Tracking over Fading Channels

F S. CHANG AND M. D. SRINATH

Abstract—The problem of tracking a targe t in a multitarget environ-
,nenl w hen the observations are received over a fading channel is
considered. The optimal Bayes solution to (tie tracking problem in such
cases involves growing memory and hence is not feasible. A particularly
effective suboptimal scheme uses a probabilistic judgment a t  each stage
of the observations to overcome this problem. This concise paper
presents an evaluation of the scheme in terms of mean-square error
performance when the observations are received over fading channels.

I. INTRODUCTION

Recent ly there has been an Increasing interest in the syn-
t hesis of communication systems for space appl ications. The
communication channel modifies the transmit ted signal so that
t he desired message may arr ive at the receiver terminal dis-
torted , attenuated , and de layed. The message is usually ob-
served in the presence of addit ive noise. The distortion intro-
duced by the channel can be characterized by multiplicative
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disturbances w li ie~t are responsib le for such phenomena as tion between two meas uremen ts , and where
fat t ng .  dispersion , mult ipat h , phase distortion , and tinic delay.

In recent years considerable effort has been directed toward / 3Pt
the application of st oc l ias t t c  ec t i ru.t t ion theory to the problem (

‘
~ 

~ 
( — ) X~ = X~~ f t ._ j - (

~)
o! demodulation of modula ted signals observed in noise ( I I  — \aX ft 1
(4 1 Snyder I ~

( has presented a s t , i t e -v a r i ah le model for a
wide var iety of analog communication sys te ms and channels The noise sequences ~~~~~ u1,. and Vk are mutua lly indepen-
m r  a class of Markov processes. lIe has also prese nted an dent and a re uncorrel ated with respect to the initial state 10,
analog model for the Rayleig h fad ng channel in terms of two w hich is multtvaria te normally distributed of dimension ii with
quadrature multipl icative noise processe s w hich depend upon mean p~ 

and covar iance I’~. N,, (p~. V0 1 .
the frequenc y of the transmitted signal Stoc hast ic message Under jj 3 , t he observation corresponds to the vehicle being
and channel disturbance piocess es were formulated as corn- tracked , and hence we have
ponents of the message model for mathematical convenience.
The effect of the modulation process , multiplicative noise , and 11, ’~ 

- = h ( x io k l  + U~. (6)
additive noise was considered in the observation model. The
m essage model was augmented to include the model generating It is well known that the optimal Bayes estimator for this
the multiplicative disturbances . A summary of results in this problem involves an ever-growing memory and is hence ’ not
area pertaining to angle modulation is given in (6 1. feasible. This is because the estimate of x~, at each stage

This concise paper presen ts a scheme for tracking a target depends on the sequence of past true hypotheses. This se~in mu lt itar get mult isensor environments when the observations quence , however , is unknown , and hence the estimate must be
presented to the receiver are received over such channels - The averaged over all possible past sequences. In the pattern recog.
d~ namic equation of motion of the target being tracked is nitton context , this is usually referred to as unsupervised
assumed to be modeled by a set of Gauss— Markov difference learning. (The situation where the sequence of past hypotheses
equations is known corresponds to supervised learning. )

Let Z~ M denote the set of observations up to stage k . and
• = + ~~ let Oft

1 correspond to a particular sequence of past hypotheses
at stage k. We can then write for the estimate

h tx ,,,k )  ( 1)

-
-5- a Xft = E{Xft (Zft~~}where x~ i� the n X I st ate vector and y

~ 
is a p X I output

(message ) vector The rn-vector c.a ,, is white zero -mean Gaus- Nft

sian wit h covar iance EJ~~~~e} = Qft l5 ft~~,i~ ft is an ii X it state = 

~ 
E(X ft I Za M,a~1}P~x~I I Z,,~~) (7)

t rans i t ion ma t r i x , and r,, is an n X m excitation matrix. j~ sII a particular sensor is not locked onto the target being
trac ked , t he corresponding sensor return at any stage can where N~(=3 ” ) r epresents  the total number of possible se-
orig ina te  from one of three sources (hypotheses), namel y,  I) quences at stage k. It is clear that as the number of stages
noise alone (e.g., cutoff communication link), 2) false alarm increases , t he total number of sequences over which the esti-
(e g , t hermal or process noise , or c lutter from a vehicle not mates must be averaged increases very rapidly We there fore
being tracked), and 3) the vehicle being tracked . The receiver need to resort to suboptimal schemes which use a fixed
per forms under uncertainty of reception in a ternary case memory. There are basically two approaches which can be
which considers all the possibilities. A suitable model for the taken to solve this problem. We can use a fixed number, say K ,
observations under each hypothesis can then be formulated as of past observations in arriving at our estimate Alternately .
follows (7 ( .  we can use all past observations in our estimation scheme , but

Under Jj I , the observation Z j ,  is given by choose only one (or more generally, a fixed number M) of
possible past sequences ovei which to average. A few such

H,~’ = (2) schemes have been discussed in ( 7 J — [ 9 ) .
In this concise paper , we use a p~ohah iiist ic scheme towhere the p X I vector ii

~ 
is a zero-mean white Gaussian Se- decide at each stage which one of the sequences at,”

quence with covari ance Eju t, u,,, } Rt,~ t,m . Under hypothesis corresponds to the true sequence. The effectiveness of t his
~j 2 the current observation is not used in track updating and prohabilistica lly supervised estimator (PSE) is investigated in
the one-stage prediction is used instead. The effect of the terms of mean-square error and variance when the observations
extraneous returns can he modeled as a white zero-mean Gaus- are received over fading channels.
sian sequence Vt, with covariance {i’t ,v,,} czt,~t,~ . It is
therefore reasonable to model the observation :~, under hypo-
thesis jj2 as II . PROBABILISTICA LLY SUPERVISED ESTIMATOR

/42 h~~(k I k I ),k) + (3) In generating a probabilistically supervised learning se-
quence , one has to design a probabilistic judgment at each

where i(k I k — I) is the one-stage prediction of xt ,. stage of observations on the sensor returns (8 1, (9 1. This judg-
The expression for the covariance kernel ~~ is given in (91 , ment is carried out in parallel on each sensor return in SUC h I

and for p = 2 stnsplif ies to way that each return is assigned a classification label which
then serves as its true hypothesis. We can think of the scheme

~ Ct, Vt, t,__ 1 Ct, T + Rt, as consisting of a set of parallel processing units (PP (J ) ,  one

if 
(4) corresponding to eac h of the sensors , and a central proCeSSifli

I + — 

~TF — unit (CPU) which combines the processed returns from the
2 PPU’s to update the estimate of t he target track. On receiving

the observations , eac h PPU performs a random labeling test tO
where Vt ,,t ,_ 1 = k’Ux t, - - -~a t a — s  )(xt , — rt,1t,_- 5 )~‘}. “rr is generate a label /t, corresponding to each of t he three hypo-
the expected number of incorrect returns in one sigma region theses 18 1, The label is then accepted as the true hypothesiS at

mm {(C,, Vt,~t,_ 1 Ct, T + Rt,)~j ’ ’2 , and p ii the correla- that stage. Depending on the label , t he observation from the
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ith sensor is modeled according to (2)—(4) by the corre - Ill AUGMENTED MODELS
sponding PPIJ. The CPU algorithm for combining the ob-
servatto n models supplied by the PPU’s to obtain the track Typicall y, the signal nonlinearly modulates a sinusoidal
es,imatc is discussed in a later section . carrier that arrives at the receiver distorted by disturbance

We can now consider the generation of the random labels, proce sses encountered in the transm ission media. These
Suppose there are Al sensors , and that at stage k there are t it ,  disturbance processes usually include both additive noise and
returns . i,,, ~ N. Let i t, 1 denote the label generated by the ith multiplicative noise. They Interact with the channel inputs in
PPU at stage k. and let l . (k)  be the vector a randomly time-vary ing fashion. In particular , the multi-

plicative Gaussian channe l noise sequences b,, and C1, are
1.1k)  (!,,t lt,2 ... ~

t,
n~~ assumed to be generated by linear time-invariant models de-

scribed by two one-dimensional first-order discrete stochastic
Let / ~,M denote the set of all past labels L (j ) ,/  = I -“  k. equations:

Similarly, let :~,
1 denote the ith sensor return at stage k ,

and let bt, .,.1 =Oh b ba + (I _ 4l,,b lm t,b +w,,b (14)

Z(k) (z,,1 Tz,,21 ...zt,
hIa l’IT and

Let Z1, ‘~‘ denote the set of all past observations Z(/), / = ... Ck + = ~ k~~Ck + J J Ok C Jm t,e + (15)
Since there are three hypotheses , the label i t, 1 is a ternary ran-
dom variable. When a new measurement z t, ~

. ~ is received , the where w;~ and 0 t,b are statistically independent scalar zero-
PPU updates the probabilities associated with the three out- mean white Gaussian sequences with variances qt,b and qt,

C
,

comes on t he basis of _~~ + , the past measurement sequence respectively, and rn t, ” and m,,C represent the time-invariant
Z,,M , and t he past labeling sequence L,,M . We can then write means for the multiplicative sequences b,, and Ct,, respectively.
for these probabilities Furthermore ,

(8)
flz ,,÷~~ I Z t,~

t ,Lt,M )

where mt,~ = 0, for Rayleigh channel

f(zt,~ ~‘I Zt,M ,Lt,M ) mt,b = 
~‘
, for Rician channel

and ‘y is the specular component 19 1.
= ~~•~~ j~~~t , +  i~ I ‘~ * ii,, + 11.Zt,M,L,,M) In order to complete the augmented message model , one

=

should adjoin the message equation of ( I) and (14) and (15)

+ 1 1 1 Z,,M,Lt,M ). 
in any order. For instance , one may write

for i = 1 ,2 - n t ,,,  1 ,2 ,3 - (9) ~~~ 
~~~~~~~~~ + + (16)

If we assume that the hypotheses are independent from stage where
to stage , we can write rx

”] [0 

1
fli t,. Ht, + ~

I I Z  111/ Mt, .~t, )=flIt ,41~~~/4÷,1). (10) 

~t, =l ~b5-t,” , ~~~~~
r [w

~~
bj .  

nit,
It only remains to determine f (z ,, 

+ ~‘ I l~ ~
‘ = H,, ~. ~~~, Z,,M . yet , c1~~ m~”~ji,,Mj . Unfortunately, the determination of this density func-

the observation models. We can seek to approximate this
density funct ion by a Gaussian density which has the same =

tion is extremely difficult because of the nonlinear nature of 
[iii

: 
- - 

0 1 rt,
:-fl~

ftZ,,+1 iI1,,+1I =H,,+1I,Z t,M,Lt,M)=N~ (0,R,,41~I, 

0 •~ ] ~ I
o :first two moments W~ then obtain 0

and
for 1= 1  (Il)

b 0 0 ~
= N ,(h ’(

~
t , + ) l t , (LM ” ) ,k +  l),fZt ,+1 t(L,,M )l. 

~k L b 1
~ J . (Ii)

for /=2 (12) 
0~ 0 (I _~~,,C)J

= N,(h’Ut,+lIk (LM
t,),k + I),

Ct, ~ 1
1V t, + 1 t,

f
at,

M nc,, + i)T + Rt, + ~‘ i , For the augmented state model , the observation model
generated by the ith PPU is given by (see (2), (3), and (6)1

f o r / = 3  ( 13)
if It,’ r= I! ,,’ (18)

where N,(rn .02) denotes the p-variate C.aussian density func-
tion wi th mean ii, and variance o2 and R,,, 52 ,,, and C~ arc as Zt,’ = h(t ,,1,,._ 1,k I  + vt,, if lt,~ = /42 (19)
discussed earlie r The superscript s ‘denotes that the quantitiesCoy~~p~ fl~j to t he ith sensor. and -
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= h I V t,. & )  ‘4- sit,, if i~’ = /43 20 TAIILI: i
.\ t  t ots ! II\ l~ l O i S  T A R ( ; FT  TRACK ING

where 
~~t, ~~~~~~ 

represents the on e-st age prediction of 
~~~ 

_
~~~

. ~~~~~~~~~~~~~~~~~~~~~ ‘ - - ‘ I

— h) ~~~, k~ (IN)

IV LSI IM.\TOR AL.GORIT IIMS 
- I • I ~i 

(Iii4 % s v f v j (  IOn t)Jfli - S
N 4 I N

Wi’ note from (I t~ and ( I  R )—( 20) that the message and ob- -
III. Iservation equations are nonlinear. W~ again resort to a wide- ‘N 4 k-I ’ • ~~ ~ - (iN)

sense or Gaussian -f i t  approx imat ion  to the relevant a p oste ri or i
density functions !1~ t, ~~ Z ,, ” ) and J(~~ + I j t,

M Z,,M ) ‘4 ~~~
‘5 ’ ~ 

• 0 • N~ (20)

1.et us make the following definit ions: ,
~ 

.

III ( ( I 
4~ 

I S

A ,, ~ {j ,~ 1w ,, + 1, A + I I  “‘ h”k IT t, + i ,k + II }T (2 1 )  LabellIng A lger . ‘N.i 4.1 ~ k•I, 2~. y
I ,H S I j  M S

N 1 k*I k.i 
- — Z~ .ah ,, +1 M 

(
a/m 1,. 1M\ •~ 

__________ ________

) T,, + = 1~t ,(f,t,M ) (22 )  ~~~~~~ 
L~~ 

• 5$ )

~Xt,~ j I1, ax ,,+ 1
and ~~~~~ 

Z~~, L~) 
. ri~

1 ~ 7,1 
L’~)i(.

1 ,1 i~ . L~ik~ 
• 4.0 ’ N N INI 4.0

(N)
R ,,~ 1M 

~ di ag IR ,,4 j~ “ R ,, +1”~ 1 . (23) l ( t ~~ - N ,1 Z~ . i~ ) - t((~,( - N~~ ()

Using a first-order Taylor series approx imat ion about the one- ‘~‘~.i~~~i 
- 

~~~~~~ 
z~ . L~i

stage prediction , the following equations for updating the first
~ ~~ 5k+i t if ~ — 1 (11)two moments of the density functions can easily be obtained . IThese equations are similar to the extended Kalman filter

— (I ) h f o ~~~ .~ (L~ ),  4”]) , ~~ 1(i.~)i i f ,  2 (12)algorithms (I II.
N ihI ~= ~~~~~~~~ + i,I,,,u,, (2 4) I p k i k ~~ h~~

’ 4.0), C v~• 114 t~i(c~,~~ •

if 3 — 3 ( 13)

V,,+11,,(L,,M)=Ø,,V,,(L,,M )ø,,T + r ,, Q,,r ,,T (25)
reti..tIOfl Algoriti,..:

/a/i,,+ ~M 

)r 
“1I1’II~~~~~ 

‘k~ k~~
’k~ 

• 
4”k (24)

—

~ 
1 , + 5 ) 1 ,  V

k*i
.
k (i . i  — V~ (L~)~~ kyk (2~

r Iah,,~ ~~‘ \ ~~~~~~~~~ 
- V

4~~~14
(L~) 1~ _ i .  11°a~ 1 -

__________ 

V44,j i,(i.~)

) , V,,~~i1,,(L ,,~”) t ”~*i k i jt~’k.iiki‘RaT,,.1,,
it ~r -1

M’NT
+~ j  

— 

(26) 
- ~~~~~~~ . R

~~~: (24 i.(~‘ I +R ,,
1,, + (L,, + 1M) = + ~ t,(J,,t,M) ‘b,i~~~.i~ ~~ I k ~~

’h > 
~~~~~~~~~ 

- (2 7 )

S

+ ~~~ 1(L ,,+ i j I z ,,~ 1
M — + 1M)  (27) V

4•1
(L~~ 1

i 1 - ~~•1
iL
~,~

i - ~~ ±LI.  V (L~ I (3$)H

t~’koi~~J I
and - -

Vt, + 1(L,, + 1M) = [i 
— K,, + 1(L ,, + 

17 1 in which the parameters of the aircraft being tracked are
given as follows:

+ t  ~ I(Oh 1, M’ 1 : position at stage kl

I i+ lIk X~, =a~ IJ Vt,~~2 1, (L ,,~t )  (28) : speed at stage k I
y : position at slag 

kJwhere
y : speed at stage k (4X 1)

h,,,i,1M = h ,,~~1~’(*, , + 11,,(L,,~’),k + I ) .  (29)

f change in x-speed between stage k and stage k + Il
Equations (24 )— (29) , when used in conjunction with the ~~ =[chaoge iny.speed bctween stageka nd stagek+lJ (axl )
labeling algorithm of (8)— (13), constitute a complete set of
algorithms for target tracking. The algorithms are summarized
in lable l. 

[

I r 0 o’ ro 0’

V. SIMULATION RESULTS 0 =
o i 0 

OJ 
Ii o~

0 0 I ~ ~~1,
=[. 

~jWe consider the problem of multiple-sensor tracking of an
aircraft in the presenLe of fading. The message model is as In 0 0 0 I (4X 4) 0 I (4X I)

_ _ _ _  
_ _ _ _ _ _ _ _  -.-, - . .

— — ‘ - 
-

.

_ _ _ _ _  - - _ _ _ _  
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FIg. 1. MSE o’iei fad ing channels.

and A 1 = ¶,/3.~X 1(k)x 5(k) cos (k~~1) + s/~x 1(k)xg(k) sin (kI~1),

1q 1(k) 0 1
= [ 0 q22 (k)j (2x 2) 

= 
~ñxa(k) x r~(k)  cos (kiP2) + v9’x3(k)x6(k) sin (k5i~2),

where T is the sampling interval. 
~~ 

and W 2 are the carrier frequencies of x-measurement and
The additional state space associated with the fading y-measurement , respectively, x5(k) b,,, and x6(k) = et,, The

channel processes is represented by two first -order Butter- results for nonfading channels can be obtained by setting
worth spectra given by = I and x6 = 0 in these equations.

The following set of parameters were used in simulations:
2K ,, O,,~

= S~(w) = (30) T = 0.002w 2 + Kb2
Kb 30

where K,, is the half power frequency or one-sided bandwidth 
P(H,,1) = P(H,,2) = 0.1 and P (H ,,3) = 0.8and 

~ b
2 is the spectral power. The two corresponding one-

dimensional discrete equations are R,, = 0.16 56

b,,+1 =e”X bTb,, + ( I  _ e~~~bTIu,,b + 1),,b (31) y=  5 and 10

i~1 =3I.4I and W2 = 67.82and -

S,,(0) = —10 dB.
4+i e ’K bTc,, + (I _ e ”1CbT lu,,c +~~~~t,

C. (32)
A 100-stage process was ssmu)ated, and ten runs were

The excitation covariances are averaged to obtain the mean-square errors as well as the van-
ances associated with the first component of the augmented

q,,b o,,~(I — e’’2Kbl’) state vector under five ground sensors. The results are shown
in Figs. I and 2. As may be expected , the curves associated

and with fading channels are bounded from below by those for the
nonfading channel. It may also be expected that the transition

qt,
C c,,2(l _ e — 2X b D). from the Rayleigh model to the known signal model may be

obtained by varying the value of the specu lar component 
~ 

inWe assume that the message amplitude modulates a sinusoidal ~~ RICISO model, with y = 0 corresponding to the Rayleighcarrier whose frequency is large compared to the significant channel and ‘y = to the completely known signal case, Thefrequency of t he niessage . so (hat the signal component of the correspoisding normalized mean-square errors are defined asmodulated message has a bandpacs spectrum that is essentially
disjoint front that of the message . In this case , we can Write 

FI(x — .~t,)(x,, —in the observation model ollI) as — ___________________

EIx,,x,,T Iii
=

plotted in Fig. 3.where 
(wh ere for any matrix A , IA Iu denotes t he i/th entry ) and are

67
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APPENDIX A

STATISTICS OF EXTRANEOUS RETURN S

The output equation for extraneous sensor returns (hypothesis H2
)

was modeled as

Z
k 

= C
k 
X
klk l 

+ U
k 

(A.l)

where Uk 
is assumed to be Gaussian, white with zero mean and covariance

The assumption of whiteness of the sniscorrelations has been discussed in

[1] where it has been shown by Monte Carlo simulations that this is a good

representation for predicting performance in dense environments.

In order to derive an expression f or 
~

2k ’ we can follow the derivation

in [21 and assume all returns fall within a region (gate) C in the ob-

servation space and let the size of the gate tend to infinity. In order

f o r  (A.l) to represent an incorrect return, the corresponding return must

be the closest to C
k ‘1kIk—1 given that the closest point is an incorrect

return . Let

41k - Ck VkIk l 
C~ + Rk 

(A .2)

where VkIk_ 1 and R.K have been defined in Chapter 2 and let

- mm 
~~~~~~~~~~~~~~~~~~~~ 

(A.3)

and let M be some integer.

We then define a region ~ as

C — 
~

Z
k J Z k 

— — Ck 3tkt k_ l ;IJZk IJ
~~k

_l < McYk} (A.4)

Similarly let D be the region such that

— — Ck X1i (Ik l + vk; I I~k 1 2 
~ 
I I I Uk I (A.5)

it then follows tha t there should be no other returns with residuals in

the region C ~ D, so that the density function for Uk given that 1’k ~~

an extraneous return is

t 
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I

f(v k Iv k is residual of an incorrectly correlated return)

— f(U
k 
no other return in G ft D)

P[no other return in C 11 D)vk) f (v  )
(A.6)

PEno other return in G (1 DJ

If we assume that all incorrect returns are uniformly distributed for

U
k 

c C and that C 11 D can be replaced by t~ with little error (see [ 2 ] ) ,

we can write

P [no other return in ö n

= P [no correlation is made I proper return is detected) 
~D

+ P [no correlation is made J proper return is not detected]

P 2
- [1 - 

(T) I4)kI J exp{-
~J I~kH 4)k l}dY

k)

• exp {— ‘

~~

- 

t4)kI
”2 J dy~} (A.7)

where denotes the probability of detection. We note that the denomi-

nator of Eq. (A.6) is just a normalizing constant. The preceding equation

for p — 2 reduces to [2]

f(vkI no other return in G fi D)

— const. exp~ — l/2IIvkII 2~ —i} (A.8)

4) k

where c~~- k

1 + 2 ~TF li’l - p2

Here p is the correlation between two measurments, and 
~TF is

the expected number of incorrect returns in a one_ak 
region.
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